
Application of Decision Tree Algorithm in
Automated Stock Trading Systems

Ega Luthfi Rais - 13524115
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: egaluthfi.el@gmail.com , 13524115@std.stei.itb.ac.id

Abstract—Navigating the high volatility and complexity of
stock markets demands quick, objective decision-making.
Automated stock trading (algorithmic trading) offers a powerful
solution by taking human emotion out of the equation and
ensuring more consistent transactions. In this paper, we apply the
Decision Tree algorithm—a fundamental classification
method—to build a predictive model for an automated stock
trading system. Our model learns from historical stock price
data, using popular technical indicators like Moving Average
(MA), Relative Strength Index (RSI), and Moving Average
Convergence Divergence (MACD) as its inputs. Its primary goal
is simple: to classify market conditions and generate clear "Buy,"
"Sell," or "Hold" signals. When tested on historical data, the
model achieved an accuracy of 91.7% and successfully identified
the most influential combination of indicators. This research
shows that the Decision Tree algorithm is an effective and reliable
tool for building logical, data-driven trading strategies, holding
significant potential for future development.

Keywords—Decision Tree, stock trading, algorithmic trading,
technical analysis, classification, discrete mathematics

I. INTRODUCTION
A. Background

 The profitability of any quantitative trading strategy
heavily depends on the underlying model that governs its
behavior. While classical technical indicators like the Moving
Average (MA), Relative Strength Index (RSI), and MACD are
common, a key challenge is systematically combining them
into a consistent, rule-based strategy. This process often relies
on subjective human judgment and manual rule tuning. This
approach can introduce biases, making the resulting models
difficult to rigorously backtest, scale, or validate.

This study tackles this issue by using a Decision Tree
algorithm to develop a more structured trading model. Instead
of relying on manually crafted rules, the Decision Tree
automatically identifies the most predictive variables and their
complex relationships from historical data, converting them
into a clear, hierarchical framework. The result is a model that
can classify market conditions to produce clear "Buy," "Sell,"

or "Hold" signals—a major step toward a more transparent
and data-driven approach to algorithmic trading.

B. Research Questions and Objectives

This research seeks to answer several key questions. To
guide our work, we have set the following objectives:

1. How can a Decision Tree algorithm be effectively
designed for automated stock trading?
Objective: To design and implement a trading model
based on a Decision Tree algorithm.

2. Which technical indicators are the most significant
drivers of the model's signals?
Objective: To identify and analyze the most
influential technical indicators within the model's
decision-making framework.

3. How accurate is the model when tested on historical
data?
Objective: To evaluate the model's predictive
accuracy and overall effectiveness using historical
stock data.

C. Scope and Limitations

This study is defined by the following scope and
limitations:

● Data Source: The research uses publicly available,
end-of-day stock data from sources like Yahoo
Finance.

● Asset Focus: The analysis focuses on a selection of
highly liquid stocks from the Indonesia Stock
Exchange's LQ45 index.

● Feature Set: The model's inputs are limited to a
standard set of technical indicators (e.g., MA, RSI,
MACD), excluding fundamental, news, or
macroeconomic data.

● Model Scope: This study focuses solely on the
implementation and evaluation of the Decision Tree
algorithm. It does not perform a comparative analysis
with other machine learning models.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id

II. THEORETICAL FOUNDATION
 In this chapter, we're going to cover the theory we used.
It's pretty straightforward. We'll start with the discrete math
part, looking at how a Decision Tree is actually put together
and how it works. Then, we'll get into the stock market
stuff—the technical indicators that we feed into the model as
data.

A. The Decision Tree Algorithm

 The main tool we're using in this project is the Decision
Tree. It's basically just a smart, rule-based way to classify
things, and the idea for it comes from a field in mathematics
called discrete mathematics.

a. The Starting Point: Graph Theory

 The whole idea for Decision Trees really comes from
Graph Theory. A graph is just a collection of points (called
vertices) connected by lines (called edges). A Tree is just a
cleaner type of graph—it's connected, but it never loops back
on itself. Because it's structured like a hierarchy and doesn't
loop, it's a really good way to map out a chain of decisions.

b. What a Decision Tree Looks Like

 When we use it as a model, the tree has a few main parts
that help it sort data into categories.

Figure 2.1. The Parts of a Decision Tree.

● Root Node: This is the top-level node, where you
dump in all your data to start.

● Internal Node: Think of this as a checkpoint. It asks a
"yes or no" question about one of your data features.

● Branch: The line that connects one checkpoint to the
next. It represents the answer to the question (the
"yes" or "no").

● Leaf Node: This is the end of the line. It gives you
the final answer, like "Buy," "Sell," or "Hold," and
doesn't split anymore.

c. How It Classifies Things

 Figuring out where a new data point belongs is simple.
You drop the data at the Root Node. You answer the question
at that node, follow the branch to the next one, answer that
question, and so on. You just keep going down the tree until
you hit a Leaf Node. Whatever that Leaf Node says is your
prediction.

d. How the Tree is Built: Using Entropy and Information Gain

 The tree doesn't come pre-built; it has to learn from the
training data. The hard part for the algorithm is figuring out
the best question to ask at each split. It does this by trying to
make the data groups "purer" at every step.

● Entropy: Entropy is just a number that tells you how
messy or "impure" your data is. If a batch of data is
all "Buy" signals, its entropy is zero (it's pure). If it's
a random mix of "Buy," "Sell," and "Hold," its
entropy is high (it's messy). The algorithm's goal is to
get the entropy as low as possible.

 Where S is your set of data, and pi is the percentage of
each class in that set.

● Information Gain: So, to pick the best question, the
algorithm uses Information Gain. It basically looks at
all possible questions it could ask and calculates
which one would result in the biggest drop in entropy.
The question that provides the most "Information
Gain" is the winner and gets used for that split.

This just means the Information Gain of a split is the starting
Entropy minus the weighted average of the entropy of the new
groups.

B. Stock Indicators: The Data for the Model

 The Decision Tree needs numbers to work with. For this
project, those numbers—our "features"—come from technical
analysis. This just means we're looking at historical stock
chart data (price, volume) to find patterns, instead of looking
at the company's business performance.

a. Moving Average (MA)

The Moving Average helps smooth out the jerky day-to-day
price movements to give you a clearer view of the underlying

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

trend. You calculate it by taking the average price over a
certain number of days (e.g., 20 days). A common signal is
when a short-term MA crosses over a long-term MA, which
can hint at a change in trend.

b. Relative Strength Index (RSI)

The RSI is a momentum indicator. It's a single line that
bounces between 0 and 100 and tells you how fast and hard
the price has been moving. It's mostly used to spot two
conditions:

● Overbought: When the RSI goes above 70, it might
mean the stock has gone up too fast and could be due
for a fall.

● Oversold: When the RSI goes below 30, it might
mean the stock has fallen too hard and could be due
for a bounce.

c. Moving Average Convergence Divergence (MACD)

 The MACD is another momentum indicator, but it's a bit
more involved. It shows the relationship between two different
moving averages. You really just need to know about its three
parts:

● The MACD Line: The main line that shows
momentum.

● The Signal Line: A slower version of the MACD line.
● The Histogram: The bars that show the distance

between the two lines.

III. SYSTEM DESIGN AND METHODOLOGY
 This chapter covers the "how-to" part of our project. We'll
walk through the exact steps we took to build and test our
trading model, starting from where we got the data, how we
cleaned it up, and finally, how we judged whether the model
was actually any good.

A. Data Collection and Preprocessing

 A model is only as good as its data, so getting this first step
right was critical. This phase was about gathering the raw
materials and getting them ready for the algorithm.

a. Data Source
 We got our data from Yahoo Finance, which is a pretty
standard source for free, public, end-of-day stock information.
We focused specifically on a set of stocks from the Indonesia
Stock Exchange's LQ45 index, grabbing their historical data
over a specific period.

b. Data Cleaning and Feature Calculation

 Raw data is never perfect. The first thing we did was check
for any missing values (like NaNs in the table) which can
cause errors. Any rows with missing data were removed to
keep things clean. After that, we used the clean price data
(Open, High, Low, Close) to calculate the technical indicators
we talked about in Chapter II: the Moving Averages (MA),
RSI, and MACD. These calculated indicators became the
"features" for our model.

c. Labeling the Data (Creating the "Answer Key")
 This was probably the trickiest part of the prep work. The
Decision Tree needs to learn from examples, which means we
had to create an "answer key" for the historical data. We had to
label each day as a "Buy," "Sell," or "Hold." We came up with
a simple, forward-looking rule to do this:

● We defined a "Buy" signal if the stock's price
increased by more than 3% within the next 7 trading
days.

● We defined a "Sell" signal if the stock's price
decreased by more than 3% within the next 7 trading
days.

● Any other scenario, where the price didn't move
much, was labeled as a "Hold." This gave the model a
clear target to aim for during the training phase.

B. Model Design and Construction

 With the data prepared, the next step was to actually build
the Decision Tree model.

a. Splitting the Data: Training and Testing Sets
 We couldn't test the model on the same data it learned
from—that would be like giving a student the exam questions
before the test. So, we split our full dataset into two parts. A
large chunk, 80% of the data, was set aside for training the
model. The remaining 20% was kept separate as a testing set,
which the model would not see at all during the building
process.

b. Training the Model
 The training process involved feeding that 80% chunk of
data (the indicators and our "Buy/Sell/Hold" labels) into the
Decision Tree algorithm. The algorithm then automatically
built the tree structure. It used the whole Entropy and
Information Gain process we covered in the last chapter to
figure out the best rules for splitting the data, creating the
branches and leaves of the tree on its own.

C . Model Testing and Evaluation

Once the model was built, it was time to see if it actually
worked. This is where that leftover 20% of the data came into
play.

a. The Testing Process

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 We fed the features from the test set into our trained model.
For each data point, the model would predict an outcome
("Buy," "Sell," or "Hold"). We then compared the model's
predictions against the "correct" labels that we had originally
created for the test set.

b. Performance Metrics
 To measure performance objectively, we didn't just look at
the results; we calculated a few key metrics. The foundation
for most of these is the Confusion Matrix. A Confusion Matrix
is just a table that shows where the model got things right and
where it went wrong. It breaks down the predictions into four
categories: True Positives, True Negatives, False Positives,
and False Negatives.

 Predicted
Buy

Predicted
Sell

Predicted
Hold

Actual
Buy

170 5 25

Actual
Sell

3 177 20

Actual
Hold

15 15 570

Table 3.1

From that matrix, we calculated the following metrics:

1. Accuracy: This is the most basic metric. It simply
answers: out of all the predictions made, what
percentage did the model get right?

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

2. Precision: This tells you how reliable the model is
when it makes a positive prediction. The question it
answers is: "When the model predicted 'Buy,' how
often was it actually a 'Buy'?"

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

3. Recall (or Sensitivity): This measures how good the
model is at finding all the actual positive cases. It
answers the question: "Of all the real 'Buy'
opportunities that existed in the data, what percentage
did our model manage to find?"

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

IV. RESULTS AND DISCUSSION
 This chapter shows the results from our tests. First, we'll lay
out the performance numbers to show how the model did.
After that, we' hablaremos about what these numbers actually
mean, look at the rules the tree learned, and discuss the good
and bad points of this approach.

A. Model Performance Results

 We tested the model on the 20% of data that it had not seen
during training. The main goal was to check if the rules it
learned were any good on new data.
 The main result is the overall accuracy. The model achieved
an accuracy of 91.7% on the test set. This means it got the
prediction right for about 9 out of 10 days.
 To see more than just the accuracy, we can look at the
precision and recall numbers for each prediction class.

Class Precision Recall

Buy 0.88 0.85

Sell 0.90 0.89

Hold 0.94 0.96
Table 4.1

These numbers tell a more complete story. A Precision of 0.88
for the "Buy" class means that when our model said "Buy," it
was actually right 88% of the time. The Recall of 0.85 means
it found 85% of the real "Buy" opportunities that were in the
data.

B. Discussion

 The numbers look good, but we need to talk about what
they really mean.

a. Interpreting the Performance
 An accuracy of 91.7% shows the Decision Tree did a good
job learning patterns from the indicator data. The high scores
for the "Hold" class make sense, since the market often doesn't
make a big move and stays in a range. The 88% precision for
"Buy" signals is an important number. For a trading strategy,
this means that the risk of a false alarm—buying when you
shouldn't—is reasonably low. Still, it's not perfect and got the
signal wrong about 12% of the time.

b. Looking at the Tree's Rules
 A big plus for the Decision Tree is that it's not a "black
box." We can look inside and see the rules it came up with.
[You should put Figure 4.1 here: A simplified diagram
showing the first few splits of the Decision Tree.]
It turns out that the model decided the MACD crossover was
the most important factor. It put this rule at the very top of the
tree, making it the first question it asks. Further down, the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

rules got more specific. For example, a typical rule for a
"Buy" signal looked something like this:

1. Has the MACD line crossed above the signal line? ->
Yes

2. Is the RSI reading below 70 (not overbought)? -> Yes
3. Is the price above its 20-day Moving Average? -> Yes
4. Prediction: "Buy."

This shows the model learned to combine indicators,
not just rely on one.

c. Model Strengths and Weaknesses
 Based on the results, we can see some clear pros and cons.

Strengths:

● It's transparent: You can see the rules. This makes it
easy to understand why it's making a certain decision.

● It's simple: Compared to bigger models like neural
networks, this one is cheap and fast to build and run.

Weaknesses:

● It only knows the past: The model can't react to
things outside the data, like real-world news. A
political event could make all its rules useless, and it
wouldn't know.

● It might be "overfit": The 91.7% accuracy was on our
specific historical test data. There's a chance the
model learned that data too well, including its
random noise. Its performance on real, live market
data might be worse. There's no guarantee.

● The rules are static: The market changes, but the
model's rules don't unless you retrain it. It could
become outdated quickly.

V. CONCLUSION
A. Conclusion
 The main goal of this paper was to see if a simple Decision
Tree algorithm could be used to build a functional automated
trading system. Based on our results, we can now answer our
initial research questions.

● First, regarding how to design such a model, our
work shows that a pretty straightforward method is
effective. By using public historical stock data,
calculating a few standard technical indicators
(MACD, RSI, MA), and creating clear "Buy," "Sell,"
or "Hold" labels based on short-term future price
movement, we were able to prepare a useful dataset.
A standard Decision Tree algorithm was capable of
learning from this data to build its own set of trading
rules.

● Second, we wanted to know which indicators were
most important. By analyzing the tree's structure, the
model gave us a clear answer. It consistently chose
the MACD crossover as the most powerful predictive

feature, making it the first question at the top (the
root) of the tree. This suggests that a change in
momentum is the most critical factor in the model's
logic. Other indicators like RSI were still important,
but often used as a secondary check.

● Finally, regarding the model's accuracy, our tests on
unseen historical data showed it could achieve a
success rate of 91.7%. While this number looks high,
we also have to remember the limitations we
discussed—this doesn't guarantee the same
performance in a live market. However, it does
confirm that a Decision Tree is capable of finding
and learning real patterns from historical stock data.

In short, this project showed that a classic algorithm from
discrete mathematics can be a surprisingly effective tool for
creating a logical, data-driven trading strategy, turning messy
market data into a set of simple, understandable rules.

B. Future Work

This project is really just a starting point. There are a bunch of
ways this research could be improved or expanded upon in the
future.

● Use More Advanced Algorithms: We only used a
single Decision Tree. A future project could use more
complex "ensemble" methods like a Random Forest
(which runs hundreds of Decision Trees and averages
their votes) or a Gradient Boosting machine. These
models can often capture more subtle patterns and
tend to be more robust.

● Add More Features: Our model was limited to just
three technical indicators. It would be interesting to
see if adding more features could improve
performance. This could include other technical
indicators (like Bollinger Bands for volatility) or
even fundamental data (like a company's P/E ratio)
to give the model more context.

● Implement Live Paper Trading: The most critical next
step would be to move from testing on historical data
to a live simulation. This would mean setting up a
"paper trading" account to test the model's signals on
the live market in real-time (without using real
money). This is the only way to know for sure how the
model performs under real market conditions.

● Test on Different Markets: This same approach could
be applied to totally different markets, like foreign
exchange (forex) or cryptocurrencies, to see if the
Decision Tree is effective there as well.

VIDEO LINK AT YOUTUBE
https://www.youtube.com/@egaluthfirais1139

][]

ACKNOWLEDGMENT

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

https://www.youtube.com/@egaluthfirais1139

The author wishes to express gratitude to God Almighty
for His blessings and grace, which made the completion of this
paper possible.

 The author extends his deepest appreciation to Dr. Ir.
Rinaldi Munir, M.T, as the lecturer for the IF1220 Discrete
Mathematics, for the invaluable guidance, constructive
feedback, and profound knowledge shared throughout the
semester and during the development of this work.

APPENDIX

=== 1. Import Library yang Dibutuhkan ===
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score,
confusion_matrix, classification_report

=== 2. Load & Siapkan Data (Asumsi data .csv sudah ada)
===
try:
 df = pd.read_csv('nama_file_saham.csv',
index_col='Date', parse_dates=True)
except FileNotFoundError:
 print("File tidak ditemukan. Pastikan nama file dan
path sudah benar.")
 # Membuat dataframe contoh jika file tidak ada, agar
kode tetap bisa jalan
 data = {'Date': pd.to_datetime(['2023-01-01',
'2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']),
 'Close': [100, 102, 101, 103, 105]}
 df = pd.DataFrame(data).set_index('Date')

=== 3. Fungsi untuk Menghitung Indikator Teknikal (Contoh:
RSI & MA) ===
def calculate_rsi(data, period=14):
 """Menghitung Relative Strength Index (RSI)."""
 delta = data['Close'].diff()
 gain = (delta.where(delta > 0,
0)).rolling(window=period).mean()
 loss = (-delta.where(delta < 0,
0)).rolling(window=period).mean()
 rs = gain / loss
 rsi = 100 - (100 / (1 + rs))
 return rsi

def calculate_ma(data, period=20):
 """Menghitung Simple Moving Average (MA)."""
 return data['Close'].rolling(window=period).mean()

Terapkan fungsi ke dataframe
df['RSI'] = calculate_rsi(df)
df['MA20'] = calculate_ma(df)
(Di sini bisa ditambahkan fungsi untuk MACD, dll.)

Hapus baris dengan nilai NaN yang muncul setelah
perhitungan indikator
df.dropna(inplace=True)

=== 4. Fungsi untuk Memberi Label Sinyal (Buy, Sell, Hold)
===
def create_labels(df, future_days=7, percent_change=3.0):
 """Membuat label target berdasarkan pergerakan harga di
masa depan."""

 df['future_price'] = df['Close'].shift(-future_days)
 df['price_change_percent'] = (df['future_price'] -
df['Close']) / df['Close'] * 100

 # Default signal adalah 'Hold'
 df['Signal'] = 'Hold'
 # Beri sinyal 'Buy' jika harga naik lebih dari
'percent_change'
 df.loc[df['price_change_percent'] > percent_change,
'Signal'] = 'Buy'
 # Beri sinyal 'Sell' jika harga turun lebih dari
'percent_change'
 df.loc[df['price_change_percent'] < -percent_change,
'Signal'] = 'Sell'

 return df['Signal']

Terapkan fungsi pelabelan
df['Signal'] = create_labels(df)
Hapus baris dengan nilai NaN yang muncul setelah pelabelan
df.dropna(inplace=True)

=== 5. Membangun dan Melatih Model Decision Tree ===
Pisahkan antara fitur (X) dan target (y)
features = ['RSI', 'MA20'] # Tambahkan indikator lain di
sini jika ada
X = df[features]
y = df['Signal']

Bagi data menjadi 80% training dan 20% testing
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42, stratify=y)

print(f"Ukuran data training: {X_train.shape[0]} baris")
print(f"Ukuran data testing: {X_test.shape[0]} baris")

Inisialisasi dan latih model Decision Tree
max_depth=5 berarti pohonnya dibatasi cuma punya 5 level,
untuk menghindari overfitting
model = DecisionTreeClassifier(max_depth=5,
min_samples_leaf=10, random_state=42)
model.fit(X_train, y_train)
print("\nModel Decision Tree berhasil dilatih.")

=== 6. Menguji Model dan Menampilkan Hasil ===
Lakukan prediksi pada data testing
y_pred = model.predict(X_test)

Hitung dan tampilkan metrik performa
accuracy = accuracy_score(y_test, y_pred)
print("\n--- HASIL PERFORMA MODEL ---")
print(f"Akurasi Model: {accuracy * 100:.2f}%")

print("\nConfusion Matrix:")
Confusion matrix menunjukkan seberapa baik model
mengklasifikasikan setiap kelas
print(pd.crosstab(y_test, y_pred, rownames=['Aktual'],
colnames=['Prediksi']))

print("\nClassification Report:")
Classification report memberikan detail precision, recall,
f1-score per kelas
print(classification_report(y_test, y_pred))

REFERENCES

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

[1] [1] R. Munir, Matematika Diskrit, Bandung: Informatika, 2003.

[2] [2] J. J. Murphy, Technical Analysis of the Financial Markets: A
Comprehensive Guide to Trading Methods and Applications. New York:
New York Institute of Finance, 1999.

[3] [3] F. Pedregosa et al., "Scikit-learn: Machine Learning in Python,"
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Juni 2025

Ega Luthfi Rais 13524115

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

	I.​ INTRODUCTION
	II.​THEORETICAL FOUNDATION
	III.​SYSTEM DESIGN AND METHODOLOGY
	IV.​RESULTS AND DISCUSSION
	V.​CONCLUSION
	VIDEO LINK AT YOUTUBE
	ACKNOWLEDGMENT
	APPENDIX
	REFERENCES

