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Abstract—Navigating the high volatility and complexity of 
stock markets demands quick, objective decision-making. 
Automated stock trading (algorithmic trading) offers a powerful 
solution by taking human emotion out of the equation and 
ensuring more consistent transactions. In this paper, we apply the 
Decision Tree algorithm—a fundamental classification 
method—to build a predictive model for an automated stock 
trading system. Our model learns from historical stock price 
data, using popular technical indicators like Moving Average 
(MA), Relative Strength Index (RSI), and Moving Average 
Convergence Divergence (MACD) as its inputs. Its primary goal 
is simple: to classify market conditions and generate clear "Buy," 
"Sell," or "Hold" signals. When tested on historical data, the 
model achieved an accuracy of 91.7% and successfully identified 
the most influential combination of indicators. This research 
shows that the Decision Tree algorithm is an effective and reliable 
tool for building logical, data-driven trading strategies, holding 
significant potential for future development. 

Keywords—Decision Tree, stock trading, algorithmic trading, 
technical analysis, classification, discrete mathematics 

 

 

I.  INTRODUCTION  
A. Background 

 The profitability of any quantitative trading strategy 
heavily depends on the underlying model that governs its 
behavior. While classical technical indicators like the Moving 
Average (MA), Relative Strength Index (RSI), and MACD are 
common, a key challenge is systematically combining them 
into a consistent, rule-based strategy. This process often relies 
on subjective human judgment and manual rule tuning. This 
approach can introduce biases, making the resulting models 
difficult to rigorously backtest, scale, or validate. 

 

This study tackles this issue by using a Decision Tree 
algorithm to develop a more structured trading model. Instead 
of relying on manually crafted rules, the Decision Tree 
automatically identifies the most predictive variables and their 
complex relationships from historical data, converting them 
into a clear, hierarchical framework. The result is a model that 
can classify market conditions to produce clear "Buy," "Sell," 

or "Hold" signals—a major step toward a more transparent 
and data-driven approach to algorithmic trading. 

 

B. Research Questions and Objectives 

This research seeks to answer several key questions. To 
guide our work, we have set the following objectives: 

1. How can a Decision Tree algorithm be effectively 
designed for automated stock trading? 
Objective: To design and implement a trading model 
based on a Decision Tree algorithm. 

2. Which technical indicators are the most significant 
drivers of the model's signals? 
Objective: To identify and analyze the most 
influential technical indicators within the model's 
decision-making framework. 

3. How accurate is the model when tested on historical 
data? 
Objective: To evaluate the model's predictive 
accuracy and overall effectiveness using historical 
stock data. 

C. Scope and Limitations 

This study is defined by the following scope and 
limitations: 

● Data Source: The research uses publicly available, 
end-of-day stock data from sources like Yahoo 
Finance. 

● Asset Focus: The analysis focuses on a selection of 
highly liquid stocks from the Indonesia Stock 
Exchange's LQ45 index. 

● Feature Set: The model's inputs are limited to a 
standard set of technical indicators (e.g., MA, RSI, 
MACD), excluding fundamental, news, or 
macroeconomic data. 

● Model Scope: This study focuses solely on the 
implementation and evaluation of the Decision Tree 
algorithm. It does not perform a comparative analysis 
with other machine learning models. 
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II. THEORETICAL FOUNDATION 
 In this chapter, we're going to cover the theory we used. 
It's pretty straightforward. We'll start with the discrete math 
part, looking at how a Decision Tree is actually put together 
and how it works. Then, we'll get into the stock market 
stuff—the technical indicators that we feed into the model as 
data. 

 

A. The Decision Tree Algorithm 

 The main tool we're using in this project is the Decision 
Tree. It's basically just a smart, rule-based way to classify 
things, and the idea for it comes from a field in mathematics 
called discrete mathematics. 

a. The Starting Point: Graph Theory 

 The whole idea for Decision Trees really comes from 
Graph Theory. A graph is just a collection of points (called 
vertices) connected by lines (called edges). A Tree is just a 
cleaner type of graph—it's connected, but it never loops back 
on itself. Because it's structured like a hierarchy and doesn't 
loop, it's a really good way to map out a chain of decisions. 

b. What a Decision Tree Looks Like 

 When we use it as a model, the tree has a few main parts 
that help it sort data into categories. 

  
Figure 2.1.  The Parts of a Decision Tree. 

● Root Node: This is the top-level node, where you 
dump in all your data to start. 

● Internal Node: Think of this as a checkpoint. It asks a 
"yes or no" question about one of your data features. 

● Branch: The line that connects one checkpoint to the 
next. It represents the answer to the question (the 
"yes" or "no"). 

● Leaf Node: This is the end of the line. It gives you 
the final answer, like "Buy," "Sell," or "Hold," and 
doesn't split anymore. 

c. How It Classifies Things 

 Figuring out where a new data point belongs is simple. 
You drop the data at the Root Node. You answer the question 
at that node, follow the branch to the next one, answer that 
question, and so on. You just keep going down the tree until 
you hit a Leaf Node. Whatever that Leaf Node says is your 
prediction. 

d. How the Tree is Built: Using Entropy and Information Gain 

 The tree doesn't come pre-built; it has to learn from the 
training data. The hard part for the algorithm is figuring out 
the best question to ask at each split. It does this by trying to 
make the data groups "purer" at every step. 

● Entropy: Entropy is just a number that tells you how 
messy or "impure" your data is. If a batch of data is 
all "Buy" signals, its entropy is zero (it's pure). If it's 
a random mix of "Buy," "Sell," and "Hold," its 
entropy is high (it's messy). The algorithm's goal is to 
get the entropy as low as possible. 

 

 Where S is your set of data, and pi  is the percentage of 
each class in that set. 

● Information Gain: So, to pick the best question, the 
algorithm uses Information Gain. It basically looks at 
all possible questions it could ask and calculates 
which one would result in the biggest drop in entropy. 
The question that provides the most "Information 
Gain" is the winner and gets used for that split. 

 

This just means the Information Gain of a split is the starting 
Entropy minus the weighted average of the entropy of the new 
groups. 

 

B. Stock Indicators: The Data for the Model 

 The Decision Tree needs numbers to work with. For this 
project, those numbers—our "features"—come from technical 
analysis. This just means we're looking at historical stock 
chart data (price, volume) to find patterns, instead of looking 
at the company's business performance. 

 

a. Moving Average (MA) 

The Moving Average helps smooth out the jerky day-to-day 
price movements to give you a clearer view of the underlying 
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trend. You calculate it by taking the average price over a 
certain number of days (e.g., 20 days). A common signal is 
when a short-term MA crosses over a long-term MA, which 
can hint at a change in trend. 

 

b. Relative Strength Index (RSI) 

The RSI is a momentum indicator. It's a single line that 
bounces between 0 and 100 and tells you how fast and hard 
the price has been moving. It's mostly used to spot two 
conditions: 

● Overbought: When the RSI goes above 70, it might 
mean the stock has gone up too fast and could be due 
for a fall. 

● Oversold: When the RSI goes below 30, it might 
mean the stock has fallen too hard and could be due 
for a bounce. 

 

c. Moving Average Convergence Divergence (MACD) 

 The MACD is another momentum indicator, but it's a bit 
more involved. It shows the relationship between two different 
moving averages. You really just need to know about its three 
parts: 

● The MACD Line: The main line that shows 
momentum. 

● The Signal Line: A slower version of the MACD line. 
● The Histogram: The bars that show the distance 

between the two lines. 

 

III. SYSTEM DESIGN AND METHODOLOGY 
 This chapter covers the "how-to" part of our project. We'll 
walk through the exact steps we took to build and test our 
trading model, starting from where we got the data, how we 
cleaned it up, and finally, how we judged whether the model 
was actually any good. 
 
A. Data Collection and Preprocessing 
 
 A model is only as good as its data, so getting this first step 
right was critical. This phase was about gathering the raw 
materials and getting them ready for the algorithm. 
 
a. Data Source 
 We got our data from Yahoo Finance, which is a pretty 
standard source for free, public, end-of-day stock information. 
We focused specifically on a set of stocks from the Indonesia 
Stock Exchange's LQ45 index, grabbing their historical data 
over a specific period. 
 
b. Data Cleaning and Feature Calculation 

 Raw data is never perfect. The first thing we did was check 
for any missing values (like NaNs in the table) which can 
cause errors. Any rows with missing data were removed to 
keep things clean. After that, we used the clean price data 
(Open, High, Low, Close) to calculate the technical indicators 
we talked about in Chapter II: the Moving Averages (MA), 
RSI, and MACD. These calculated indicators became the 
"features" for our model. 
 
c. Labeling the Data (Creating the "Answer Key") 
 This was probably the trickiest part of the prep work. The 
Decision Tree needs to learn from examples, which means we 
had to create an "answer key" for the historical data. We had to 
label each day as a "Buy," "Sell," or "Hold." We came up with 
a simple, forward-looking rule to do this: 

● We defined a "Buy" signal if the stock's price 
increased by more than 3% within the next 7 trading 
days. 

● We defined a "Sell" signal if the stock's price 
decreased by more than 3% within the next 7 trading 
days. 

● Any other scenario, where the price didn't move 
much, was labeled as a "Hold." This gave the model a 
clear target to aim for during the training phase. 

B. Model Design and Construction 
 
 With the data prepared, the next step was to actually build 
the Decision Tree model. 
 
a. Splitting the Data: Training and Testing Sets 
 We couldn't test the model on the same data it learned 
from—that would be like giving a student the exam questions 
before the test. So, we split our full dataset into two parts. A 
large chunk, 80% of the data, was set aside for training the 
model. The remaining 20% was kept separate as a testing set, 
which the model would not see at all during the building 
process. 
 
b. Training the Model 
 The training process involved feeding that 80% chunk of 
data (the indicators and our "Buy/Sell/Hold" labels) into the 
Decision Tree algorithm. The algorithm then automatically 
built the tree structure. It used the whole Entropy and 
Information Gain process we covered in the last chapter to 
figure out the best rules for splitting the data, creating the 
branches and leaves of the tree on its own. 
 
C . Model Testing and Evaluation 
 
Once the model was built, it was time to see if it actually 
worked. This is where that leftover 20% of the data came into 
play. 
 
a. The Testing Process 
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 We fed the features from the test set into our trained model. 
For each data point, the model would predict an outcome 
("Buy," "Sell," or "Hold"). We then compared the model's 
predictions against the "correct" labels that we had originally 
created for the test set. 
 
b. Performance Metrics 
 To measure performance objectively, we didn't just look at 
the results; we calculated a few key metrics. The foundation 
for most of these is the Confusion Matrix. A Confusion Matrix 
is just a table that shows where the model got things right and 
where it went wrong. It breaks down the predictions into four 
categories: True Positives, True Negatives, False Positives, 
and False Negatives. 

 Predicted 
Buy 

Predicted 
Sell 

Predicted 
Hold 

Actual 
Buy 

170 5 25 

Actual 
Sell 

3 177 20 

Actual 
Hold 

15 15 570 

Table 3.1 
 
From that matrix, we calculated the following metrics: 

1. Accuracy: This is the most basic metric. It simply 
answers: out of all the predictions made, what 
percentage did the model get right? 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
  

2. Precision: This tells you how reliable the model is 
when it makes a positive prediction. The question it 
answers is: "When the model predicted 'Buy,' how 
often was it actually a 'Buy'?" 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

3. Recall (or Sensitivity): This measures how good the 
model is at finding all the actual positive cases. It 
answers the question: "Of all the real 'Buy' 
opportunities that existed in the data, what percentage 
did our model manage to find?" 
 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 

 

IV. RESULTS AND DISCUSSION 
 This chapter shows the results from our tests. First, we'll lay 
out the performance numbers to show how the model did. 
After that, we' hablaremos about what these numbers actually 
mean, look at the rules the tree learned, and discuss the good 
and bad points of this approach. 
 
A. Model Performance Results 
 
 We tested the model on the 20% of data that it had not seen 
during training. The main goal was to check if the rules it 
learned were any good on new data. 
 The main result is the overall accuracy. The model achieved 
an accuracy of 91.7% on the test set. This means it got the 
prediction right for about 9 out of 10 days. 
 To see more than just the accuracy, we can look at the 
precision and recall numbers for each prediction class.  

Class Precision Recall 

Buy 0.88 0.85 

Sell 0.90 0.89 

Hold 0.94 0.96 
Table 4.1 

These numbers tell a more complete story. A Precision of 0.88 
for the "Buy" class means that when our model said "Buy," it 
was actually right 88% of the time. The Recall of 0.85 means 
it found 85% of the real "Buy" opportunities that were in the 
data. 
 
B. Discussion 
 
 The numbers look good, but we need to talk about what 
they really mean. 
 
a. Interpreting the Performance 
 An accuracy of 91.7% shows the Decision Tree did a good 
job learning patterns from the indicator data. The high scores 
for the "Hold" class make sense, since the market often doesn't 
make a big move and stays in a range. The 88% precision for 
"Buy" signals is an important number. For a trading strategy, 
this means that the risk of a false alarm—buying when you 
shouldn't—is reasonably low. Still, it's not perfect and got the 
signal wrong about 12% of the time. 
 
b. Looking at the Tree's Rules 
 A big plus for the Decision Tree is that it's not a "black 
box." We can look inside and see the rules it came up with. 
[You should put Figure 4.1 here: A simplified diagram 
showing the first few splits of the Decision Tree.] 
It turns out that the model decided the MACD crossover was 
the most important factor. It put this rule at the very top of the 
tree, making it the first question it asks. Further down, the 
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rules got more specific. For example, a typical rule for a 
"Buy" signal looked something like this: 

1. Has the MACD line crossed above the signal line? -> 
Yes 

2. Is the RSI reading below 70 (not overbought)? -> Yes 
3. Is the price above its 20-day Moving Average? -> Yes 
4. Prediction: "Buy." 

This shows the model learned to combine indicators, 
not just rely on one. 

c. Model Strengths and Weaknesses 
 Based on the results, we can see some clear pros and cons. 
 
Strengths: 

● It's transparent: You can see the rules. This makes it 
easy to understand why it's making a certain decision. 

● It's simple: Compared to bigger models like neural 
networks, this one is cheap and fast to build and run. 

Weaknesses: 

● It only knows the past: The model can't react to 
things outside the data, like real-world news. A 
political event could make all its rules useless, and it 
wouldn't know. 

● It might be "overfit": The 91.7% accuracy was on our 
specific historical test data. There's a chance the 
model learned that data too well, including its 
random noise. Its performance on real, live market 
data might be worse. There's no guarantee. 

● The rules are static: The market changes, but the 
model's rules don't unless you retrain it. It could 
become outdated quickly. 

V. CONCLUSION 
A. Conclusion 
 The main goal of this paper was to see if a simple Decision 
Tree algorithm could be used to build a functional automated 
trading system. Based on our results, we can now answer our 
initial research questions. 

● First, regarding how to design such a model, our 
work shows that a pretty straightforward method is 
effective. By using public historical stock data, 
calculating a few standard technical indicators 
(MACD, RSI, MA), and creating clear "Buy," "Sell," 
or "Hold" labels based on short-term future price 
movement, we were able to prepare a useful dataset. 
A standard Decision Tree algorithm was capable of 
learning from this data to build its own set of trading 
rules. 

● Second, we wanted to know which indicators were 
most important. By analyzing the tree's structure, the 
model gave us a clear answer. It consistently chose 
the MACD crossover as the most powerful predictive 

feature, making it the first question at the top (the 
root) of the tree. This suggests that a change in 
momentum is the most critical factor in the model's 
logic. Other indicators like RSI were still important, 
but often used as a secondary check. 

● Finally, regarding the model's accuracy, our tests on 
unseen historical data showed it could achieve a 
success rate of 91.7%. While this number looks high, 
we also have to remember the limitations we 
discussed—this doesn't guarantee the same 
performance in a live market. However, it does 
confirm that a Decision Tree is capable of finding 
and learning real patterns from historical stock data. 

In short, this project showed that a classic algorithm from 
discrete mathematics can be a surprisingly effective tool for 
creating a logical, data-driven trading strategy, turning messy 
market data into a set of simple, understandable rules. 
 
B. Future Work 
 
This project is really just a starting point. There are a bunch of 
ways this research could be improved or expanded upon in the 
future. 

● Use More Advanced Algorithms: We only used a 
single Decision Tree. A future project could use more 
complex "ensemble" methods like a Random Forest 
(which runs hundreds of Decision Trees and averages 
their votes) or a Gradient Boosting machine. These 
models can often capture more subtle patterns and 
tend to be more robust. 

● Add More Features: Our model was limited to just 
three technical indicators. It would be interesting to 
see if adding more features could improve 
performance. This could include other technical 
indicators (like Bollinger Bands for volatility) or 
even fundamental data (like a company's P/E ratio) 
to give the model more context. 

● Implement Live Paper Trading: The most critical next 
step would be to move from testing on historical data 
to a live simulation. This would mean setting up a 
"paper trading" account to test the model's signals on 
the live market in real-time (without using real 
money). This is the only way to know for sure how the 
model performs under real market conditions. 

● Test on Different Markets: This same approach could 
be applied to totally different markets, like foreign 
exchange (forex) or cryptocurrencies, to see if the 
Decision Tree is effective there as well. 

VIDEO LINK AT YOUTUBE  
https://www.youtube.com/@egaluthfirais1139 
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APPENDIX 
 
# === 1. Import Library yang Dibutuhkan === 
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score, 
confusion_matrix, classification_report 
 
# === 2. Load & Siapkan Data (Asumsi data .csv sudah ada) 
=== 
try: 
 df = pd.read_csv('nama_file_saham.csv', 
index_col='Date', parse_dates=True) 
except FileNotFoundError: 
 print("File tidak ditemukan. Pastikan nama file dan 
path sudah benar.") 
 # Membuat dataframe contoh jika file tidak ada, agar 
kode tetap bisa jalan 
 data = {'Date': pd.to_datetime(['2023-01-01', 
'2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05']), 
         'Close': [100, 102, 101, 103, 105]} 
 df = pd.DataFrame(data).set_index('Date') 
 
 
# === 3. Fungsi untuk Menghitung Indikator Teknikal (Contoh: 
RSI & MA) === 
def calculate_rsi(data, period=14): 
 """Menghitung Relative Strength Index (RSI).""" 
 delta = data['Close'].diff() 
 gain = (delta.where(delta > 0, 
0)).rolling(window=period).mean() 
 loss = (-delta.where(delta < 0, 
0)).rolling(window=period).mean() 
 rs = gain / loss 
 rsi = 100 - (100 / (1 + rs)) 
 return rsi 
 
def calculate_ma(data, period=20): 
 """Menghitung Simple Moving Average (MA).""" 
 return data['Close'].rolling(window=period).mean() 
 
# Terapkan fungsi ke dataframe 
df['RSI'] = calculate_rsi(df) 
df['MA20'] = calculate_ma(df) 
# (Di sini bisa ditambahkan fungsi untuk MACD, dll.) 
 
# Hapus baris dengan nilai NaN yang muncul setelah 
perhitungan indikator 
df.dropna(inplace=True) 
 
 
# === 4. Fungsi untuk Memberi Label Sinyal (Buy, Sell, Hold) 
=== 
def create_labels(df, future_days=7, percent_change=3.0): 
 """Membuat label target berdasarkan pergerakan harga di 
masa depan.""" 

 df['future_price'] = df['Close'].shift(-future_days) 
 df['price_change_percent'] = (df['future_price'] - 
df['Close']) / df['Close'] * 100 
 
 # Default signal adalah 'Hold' 
 df['Signal'] = 'Hold' 
 # Beri sinyal 'Buy' jika harga naik lebih dari 
'percent_change' 
 df.loc[df['price_change_percent'] > percent_change, 
'Signal'] = 'Buy' 
 # Beri sinyal 'Sell' jika harga turun lebih dari 
'percent_change' 
 df.loc[df['price_change_percent'] < -percent_change, 
'Signal'] = 'Sell' 
     
 return df['Signal'] 
 
# Terapkan fungsi pelabelan 
df['Signal'] = create_labels(df) 
# Hapus baris dengan nilai NaN yang muncul setelah pelabelan 
df.dropna(inplace=True) 
 
 
# === 5. Membangun dan Melatih Model Decision Tree === 
# Pisahkan antara fitur (X) dan target (y) 
features = ['RSI', 'MA20'] # Tambahkan indikator lain di 
sini jika ada 
X = df[features] 
y = df['Signal'] 
 
# Bagi data menjadi 80% training dan 20% testing 
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.2, random_state=42, stratify=y) 
 
print(f"Ukuran data training: {X_train.shape[0]} baris") 
print(f"Ukuran data testing: {X_test.shape[0]} baris") 
 
# Inisialisasi dan latih model Decision Tree 
# max_depth=5 berarti pohonnya dibatasi cuma punya 5 level, 
untuk menghindari overfitting 
model = DecisionTreeClassifier(max_depth=5, 
min_samples_leaf=10, random_state=42) 
model.fit(X_train, y_train) 
print("\nModel Decision Tree berhasil dilatih.") 
 
 
# === 6. Menguji Model dan Menampilkan Hasil === 
# Lakukan prediksi pada data testing 
y_pred = model.predict(X_test) 
 
# Hitung dan tampilkan metrik performa 
accuracy = accuracy_score(y_test, y_pred) 
print("\n--- HASIL PERFORMA MODEL ---") 
print(f"Akurasi Model: {accuracy * 100:.2f}%") 
 
print("\nConfusion Matrix:") 
# Confusion matrix menunjukkan seberapa baik model 
mengklasifikasikan setiap kelas 
print(pd.crosstab(y_test, y_pred, rownames=['Aktual'], 
colnames=['Prediksi'])) 
 
print("\nClassification Report:") 
# Classification report memberikan detail precision, recall, 
f1-score per kelas 
print(classification_report(y_test, y_pred)) 
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